Ice-Water Immersion and Cold-Water Immersion Provide Similar Cooling Rates in Runners With Exercise-Induced Hyperthermia.

نویسندگان

  • Julie M Clements
  • Douglas J Casa
  • J Knight
  • Joseph M McClung
  • Alan S Blake
  • Paula M Meenen
  • Allison M Gilmer
  • Kellie A Caldwell
چکیده

OBJECTIVE: To assess whether ice-water immersion or cold-water immersion is the more effective treatment for rapidly cooling hyperthermic runners. DESIGN AND SETTING: 17 heat-acclimated highly trained distance runners (age = 28 +/- 2 years, height = 180 +/- 2 cm, weight = 68.5 +/- 2.1 kg, body fat = 11.2 +/- 1.3%, training volume = 89 +/- 10 km/wk) completed a hilly trail run (approximately 19 km and 86 minutes) in the heat (wet-bulb globe temperature = 27 +/- 1 degrees C) at an individually selected "comfortable" pace on 3 occasions 1 week apart. The random, crossover design included (1) distance run, then 12 minutes of ice-water immersion (5.15 +/- 0.20 degrees C), (2) distance run, then 12 minutes of cold-water immersion (14.03 +/- 0.28 degrees C), or (3) distance run, then 12 minutes of mock immersion (no water, air temperature = 28.88 +/- 0.76 degrees C). MEASUREMENTS: Each subject was immersed from the shoulders to the hip joints for 12 minutes in a tub. Three minutes elapsed between the distance run and the start of immersion. Rectal temperature was recorded at the start of immersion, at each minute of immersion, and 3, 6, 10, and 15 minutes postimmersion. No rehydration occurred during any trial. RESULTS: Length of distance run, time to complete distance run, rectal temperature, and percentage of dehydration after distance run were similar (P >.05) among all trials, as was the wet-bulb globe temperature. No differences (P >.05) for cooling rates were found when comparing ice-water immersion, cold-water immersion, and mock immersion at the start of immersion to 4 minutes, 4 to 8 minutes, and the start of immersion to 8 minutes. Ice-water immersion and cold-water immersion cooling rates were similar (P >.05) to each other and greater (P <.05) than mock immersion at 8 to 12 minutes, the start of immersion to 10 minutes, and the start of immersion to every other time point thereafter. Rectal temperatures were similar (P >.05) between ice-water immersion and cold-water immersion at the completion of immersion and 15 minutes postimmersion, but ice-water immersion rectal temperatures were less (P <.05) than cold-water immersion at 6 and 10 minutes postimmersion. CONCLUSIONS: Cooling rates were nearly identical between ice-water immersion and cold-water immersion, while both were 38% more effective in cooling after 12 minutes of immersion than the mock-immersion trial. Given the similarities in cooling rates and rectal temperatures between ice-water immersion and cold-water immersion, either mode of cooling is recommended for treating the hyperthermic individual.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immersion Cooling during Hyperthermia: Why Warmer May Be Better

INTRODUCTION A significant number of military personnel suffer from exertional heat illness, with some extreme cases resulting in death. These illnesses may occur without warning, they are often characterised by a rapid onset and can occur even in experienced personnel. Various field treatments for hyperthermia have been developed, and one of particular interest is the use cold-water immersion....

متن کامل

Effects of a Cooling Vest on Core and Skin Temperature Following a Heat Stress Trial in Healthy Males

The purpose of this study was to examine the effects of a cooling vest on core body temperature following active dehydration and hyperthermia induced by exercising in a hot, humid environment. Based on our study, we recommend the ClimaTech HeatShield only when athletes present with mild symptoms of heat exhaustion. Fluid replacement and the prevention of heat illness have been prevalent topics ...

متن کامل

Alternating hot and cold water immersion for athlete recovery: a review

Objectives. The aim of this review was to investigate whether alternating hot–cold water treatment is a legitimate training tool for enhancing athlete recovery. A number of mechanisms are discussed to justify its merits and future research directions are reported. Alternating hot–cold water treatment has been used in the clinical setting to assist in acute sporting injuries and rehabilitation p...

متن کامل

Efficacy of Intraoperative Cooling Methods : Anesthesiology

Background: Patients may require perioperative cooling for a variety of reasons including treatment of a malignant hyperthermia crisis and induction of therapeutic hypothermia for neurosurgery. The authors compared heat transfer and core cooling rates with five cooling methods. Cited Here...: Six healthy volunteers were anesthetized with desflurane and nitrous oxide. The cooling methods were 1)...

متن کامل

Cold water immersion: the gold standard for exertional heatstroke treatment.

The key to maximize the chances of surviving exertional heatstroke is rapidly decreasing the elevated core body temperature. Many methods exist to cool the body, but current evidence strongly supports the use of cold water. Preferably, the athlete should be immersed in cold water. If lack of equipment or staff prevents immersion, a continual dousing with cold water provides an effective cooling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of athletic training

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2002